
HPV-02. Variable pumps for closed loop operation.

1	<mark>control device</mark> modular design, precise and load-independent
2	swash plate hydrostatic bearing
3	piston-slipper assembly 21° swash angle
4	housing monoshell for high rigidity
5	valve plate housing highly integrated
6	control piston integrated, hydraulically captured
7	through shaft for additional pumps
8	cylinder barrel compact due to 21° technology
9	integrated pressure relief valves for system and boost pressure
10	optional PTO pumps and motors are available with this torque transmission

Design characteristics

- >> axial piston pump in swashplate design for high pressure closed loop systems
- >> clockwise or counter clockwise rotation
- >> exact and rugged servo control devices (mechanical, hydraulic, electro-hydraulic)
- >> integrated high pressure relief valves with make-up function
- >> integrated low pressure relief valves for boost, control and cooler circuits
- >> replaceable cartridge filter
- >> SAE high pressure ports
- >> SAE mounting flange with ANSI or SAE spline shaft
- >> through shaft SAE A, B, B-B, C, D and E
- >> boost pressure pumps for internal and external suction, integrated cold start relief valve optional
- >> hydrostatic bearings of the rotating group compensate for axial forces
- >> few sealed interfaces with O-ring seals
- >> optional tandem and multiple pumps

Product advantages

- >> compact design
- >> high power density
- >> dynamic response
- >> high reliability
- >> long service life
- >> noise-optimized
- >> precise and load-independent servo control

LinDrive = Precision × Dynamics × Reliability = Benefitⁿ

Data Sheets Linde Hydraulics.

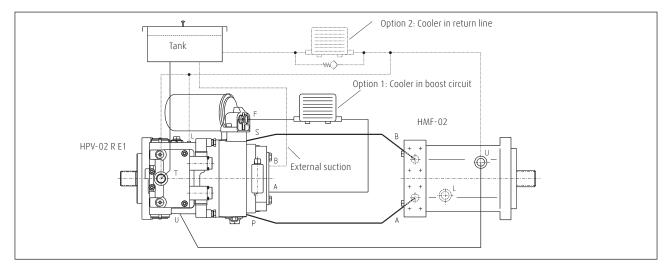
Find the right products for your application.

Product range

Product		Application	Linde product name
Pump	Self-regulating pump	open loop operation	HPR-02
	Variable pump	closed loop operation	HPV-02
Motor	Variable motor	closed and open loop operation	HMV-02
	Regulating motor	closed and open loop operation	HMR-02
	Fixed motor	closed and open loop operation	HMF-02
		open loop operation	HMF-02 P
		closed and open loop operation	HMA-02
Directional			
control valve		open loop operation	VW
Electronics	Electronic control	open loop operation	CEB
		closed and open loop operation	CED
		closed and open loop operation	CEP
	Diagnosis software	closed and open loop operation	LinDiag®
	Peripheral equipment	closed and open loop operation	

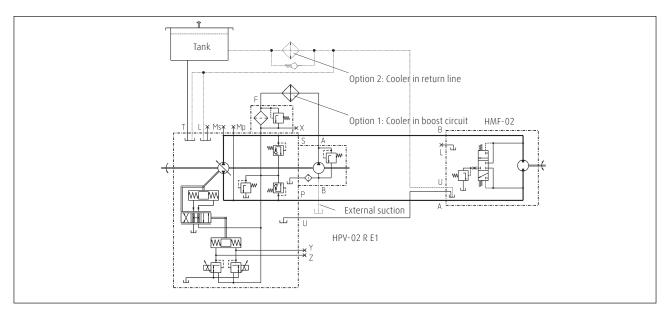
Content HPV-02.

The closed loop	4
General technical data	5
Operational parameters	
>> Life time recommendations	6
>> Filtration	6
>> Pressure fluids	7
Torque transmission	8
>> Mounting flange	9
>> Drive shaft	10
>> PTO flange	11
>> Output shaft	11
Gear pumps	12
Controls	15
>> Control accuracy	16
>> M. Mechanical-hydraulic	17
>> H. Hydraulic	19
>> CA. Hydraulic-mechanical	21
>> E. Electro-hydraulic	22


Dimensions	
>> M-controls	25
>> H-controls	26
>> CA-controls	27
>>> E-controls	28
>> Modular system	29
>> Tandem pumps	33
>> Multiple pumps	34
Modular system features	35
Your notes	35
Contact	36

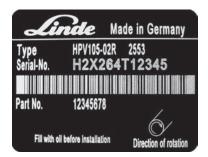
The data on which this brochure is based correspond to the current state of development. We reserve the right to make changes in case of technical progress. The dimensions and technical data of the individual installation drawings are prevailing. The features listed in this data sheet are not available in all combinations and nominal sizes. Our sales engineers will be happy to provide advice regarding the configuration of your hydraulic system and on product selection.

The closed loop.


Representation of the hydraulic components of a closed loop hydrostatic drive: Variable electro-hydraulic controlled pump HPV-02 E1 and fixed displacement motor HMF-02 plus filter, cooler and oil tank. The function diagram and the circuit diagram show two types of cooling.

Function diagram

Circuit diagram


The boost pump is shown with internal and external suction.

Standard Linde name plate

Each Linde Hydraulics unit features a name plate showing the type and the serial number. For a single order via 'open variant' a customer-specific number or free text with up to 15 characters can be stamped on the name plate.

Туре	HPV105-02	Series 02 variable pump with the rated size of 105	
	R	Right hand rotation	
	2553	the last 4 figures of the Bill of Material 2640002553	
Serial-No.	H2X		
	264	Type number of HPV 105-02	
	Т	Letter indicating year of production	
	12345	Serial number	
Part No.	12345678	Free text field for up to 15 characters	


General technical data.

The table shows the complete capacity range of the pumps, while the diagram below shows the recommended practical range for the different nominal sizes of the HPV-02 pump with control limit between 200 bar Δp_{min} and 280 bar Δp_{max} . It enables initial selection of the required nominal pump size.

Overview of technical data

Rated Size			55	75	105	135	165	210	280
	Maximum displacement	cm³/rev	54.8	75.9	105	135.6		210	280
	Maximum continuous speed (at 100% duty cycle)	min ⁻¹	3300	3100	2900	2700		2300	2000
Speed	Maximum speed (intermittent) higher speed on request	min-1	3700	3500	3200	2900		2500	2200
	Minimum continuous speed	min-1	500					5(00
	Maximum operating pressure	bar		42	20			42	20
Pressure	Maximum pressure (intermittent)	bar		50	00			500	
FIESSUIC	Continuous pressure (Δ p)	bar		25	50		250		
	Permissible housing pressure (absolute)	bar	2.5				t	2.5	
	Continuous input torque at continuous pressure	Nm	220	305	420	540	pme	840	1115
Torque	Maximum input torque at max. operating pressure and 19 bar boost pressure	Nm	350	485	670	870	in development	1340	1785
	Continuous power at max. continuous speed, continuous pressure	kW	75	98	127	153	ц ц	201	234
Power	Maximum power at max. continuous speed, max. operating pressure and 19 bar boost pressure	kW	121	157	204	245		322	373
Permissible shaft loads	Axial	Ν	2000				2000		
	Radial	Ν		on re	quest		on re	quest	
Perm. housing temperature	Perm. housing temperature with minimum perm. viscosity > 10 cSt	°C	90				9	0	
	HPV-02 with H1-control without oil (approx.)	kg	46	49	66	72		132	164
Weights inclusive IGP (Size 55-135) or EGP (Size 210- 280)	Filling volume HPV-02 housing with filter	dm ³	2.1	2.8	3.4	3.8		4.8	5.5
	Maximum moment of inertia	kgm²x 10-2	0.54	0.84	1.49	2.2		4.77	9.38

Recommended operating range of HPV-02

Operational parameters. Life time recommendations

Linde high pressure units are designed for excellent reliability and long service life. The actual service life of a hydraulic unit is determined by numerous factors. It can be extended significantly through proper maintenance of the hydraulic system and by using high-quality hydraulic fluid.

Beneficial conditions for long service life

>> Speed	lower continuous maximum speed
>> Operating pressure	less than 300 bar Δp on average
» Max. pressure	only at reduced displacement
>> Viscosity	15 30 cSt
>> Power	continuous power or lower
>> Purity of fluid	18/16/13 in accordance with ISO 4406 or better

Adverse factors affecting service life

>> Speed	between continuous maximum speed and intermittent maximum speed
>> Operating pressure	more than 300 bar Δp on average
>> Viscosity	less than 10 cSt
>> Power	continuous operation close to maximum power
>> Purity of fluid	lower than 18/16/13 in accordance with ISO 4406

Operational parameters. Filtration

In order to guarantee long-term proper function and high efficiency of the hydraulic pumps the purity of the pressure fluid must comply with the following criteria according to Linde Works Standard WN 51 210. High purity oil can extend the service time of the hydraulic system significantly.

For reliable proper function and long service life	18/16/13 in accordance with ISO 4406 or better			
>>Minimum requirements	20/18/15 in accordance with ISO 4406			
>> Commissioning	The minimum purity requirement for the hydraulic oil is based on the most sensitive system component. For commissioning we recommend a filtration in order to achieve the required purity.			
>> Filling and operation of hydraulic systems	The required purity of the hydraulic oil must be ensured during filling or topping up. When drums, canisters or large-capacity tanks are used the oil generally has to be filtered. We recommend the implementation of suitable measures (e.g. filters) to ensure that the required minimum purity of the oil is also achieved during operation.			
>> International standard	code number according to ISO 4406 18/16/13 corresponds to 20/18/15	purity class according to SAE AS 4059 8A/ 7B/ 7C 9A/ 8B/ 8C		

Available filter sizes

Filter size	55	75	105	135	165	210	280
No. 2	Х				in		
No. 3	Х	Х	Х	Х	development	Х	Х

Operational parameters. Pressure fluids

In order to ensure the functional performance and high efficiency of the hydraulic pumps the viscosity and purity of the operating fluid should meet the different operational requirements. Linde recommends using only hydraulic fluids which are confirmed by the manufacturer as suitable for use in high pressure hydraulic installations or approved by the original equipment manufacturer.

Permitted pressure fluids

- >> mineral oil HLP to DIN 51 524-2
- >> biodegradable fluids in accordance with ISO 15 380 on request
- >> other pressure fluids on request

Linde offers an oil testing service in accordance with VDMA 24 570 and the test apparatus required for in-house testing. Prices available on request.

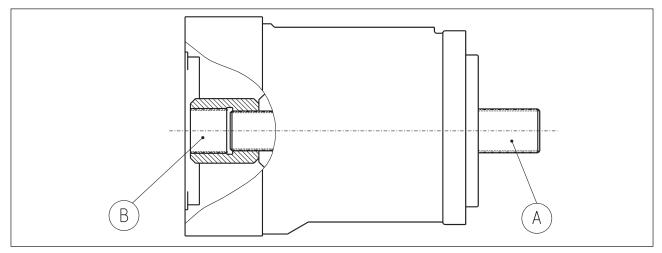
Recommended viscosity ranges

Pressure fluid temperature range	[°C]	-20 to +90
Working viscosity range	[mm²/s] = [cSt]	10 to 80
Optimum working viscosity	[mm²/s] = [cSt]	15 to 30
Max. viscosity (short time start up)	[mm²/s] = [cSt]	1000

In order to be able to select the right hydraulic fluid it is necessary to know the working temperature in the hydraulic circuit. The hydraulic fluid should be selected such that its optimum viscosity is within the working temperature range (see tables).

The temperature should not exceed 90 °C in any part of the system. Due to pressure and speed influences the leakage fluid temperature is always higher than the circuit temperature. Please contact Linde if the stated conditions cannot be met in special circumstances.

Viscosity recommendations

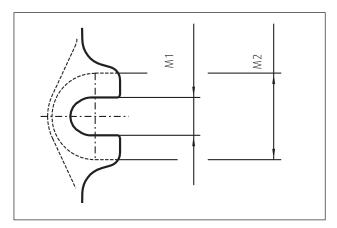

Working temperature [°C]	Viscosity class [mm²/s] = [cSt] at 40 °C
approx. 30 to 40	22
approx. 40 to 60	32
approx. 60 to 80	46 or 68

Further information regarding installation can be found in the operating instructions.

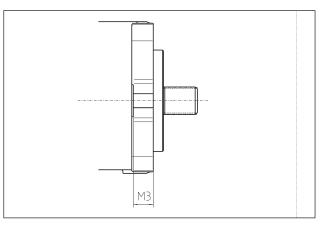
Torque transmission.

Depending on the selected components, different torques may be transferred. Please ensure that the load transfer components such as mounting flange, PTO-through shaft and additional pumps are designed adequately. Our sales engineers will be pleased to provide design advice.

Torque transmission of HPV-02

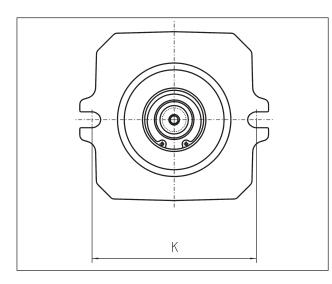

This shows the input side (A) and PTO-/output side (B) of a HPV-02 pump. The information on the following pages refers to $\frac{1}{2}$

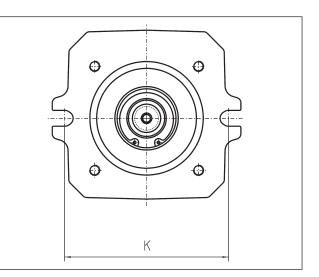
>> mounting flange and drive shaft (A)>> PTO flange and through shaft (B).


A) Flange profile

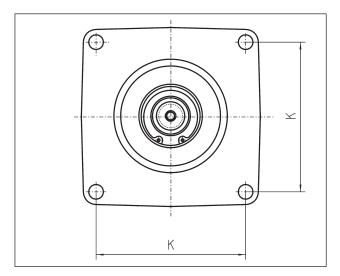
		Rated size HPV-02						
Bolt hole dimensions		55	75	105	135	165	210	280
M1 inside diameter	mm	17.5	17.5	17.5	21.5	ent	22	22
M2 outside diameter	mm	34	40	34	40	bmqc	38	39
M3 length	mm	20	20	25	20	development	30	30
Min. plate thickness	mm	6	6	6	6	in d	(8)	(8)

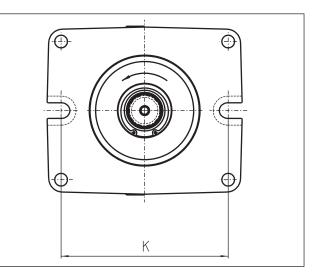
Bolt hole diameter


Bolt hole length


A) Mounting flange dimensions

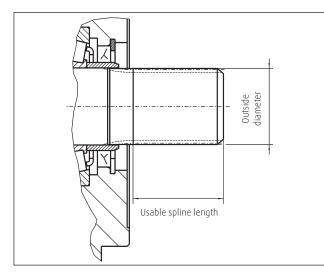
5 5	Dimension			Rate	ed size HPV-02	2			
in accordance with SAE J744	K [mm]	55	75	105	135	165	210	280	
SAE C, C-C 2-hole	181.0	Х	Х	Х					
SAE C, C-C 2-hole with 4 additional threaded holes	181.0		Х	х		in development			
SAE D 2-hole	228.6				Х	/elop			
SAE D 2-hole with 4 additional bolt holes	228.6				Х	in dev			
SAE E 4-hole	224.5						Х	Х	

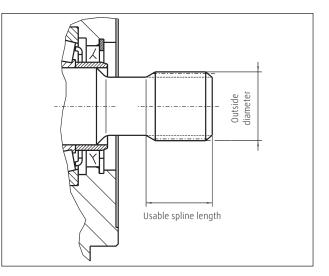

A) Fixing hole distance K 2-hole flange


2-hole flange with 4 additional threaded holes

4-hole flange

2-hole flange with 4 additional bolt holes

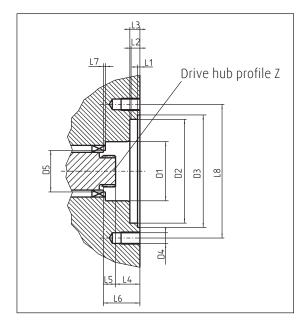

Shaft spline	SAE J744 code	Outside diameter	Usable spline length	Shaft type		Av	ailable	for ra	ted siz	е		
with ANSI B92.1	for centering and shaft	[mm]	[mm]			55	75	105	135	165	210	280
16/32, 21 t		34.51	39,5	1	Х	Х						
16/32, 23 t		37.68	38,5	1			Х					
16/32, 27 t		44.05	62	1				Х	ent	Х		
16/32, 33 t		53.57	58	1					lopm		Х	
12/24, 14 t	С	31.22	30	2	х	х	Х		development			
12/24, 17 t	C-C	37.68	30	2			Х	Х				
8/16, 13 t	D	43.71	50	2				Х				
8/16, 15 t	F	50.06	58	1						Х		


A) Dimensions ANSI and SAE drive shafts

A) Linde Hydraulics shaft types

Type 1. Without undercut

Type 2. With undercut


Torque transmission. PTO flange

Linde pumps can be combined into tandem and multiple pumps. The combination options are determined by the permitted transfer torque. The following data refers to the PTO (pump output side, without further attachments).

B) PTO dimensions

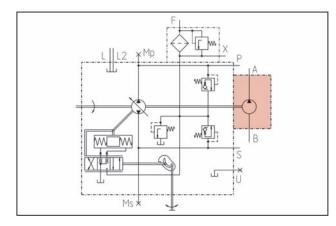
Rated size		55	75	105	135	165	210	280
Z Drive hub profile in accordance with ANSI B92.1		16/32, 15 t	16/32, 18 t	16/32, 19 t	16/32, 21 t		16/32, 24 t	16/32, 27 t
D1	mm	40	42	48	52		63	72
D2 spigot pilot diameter	mm		82	.55			82.	55
D3	mm		8	8			89	.5
D4	mm		Μ	10			M 10	M12
D5 max. bearing clearance	mm	30	35	38	43	in development	47	49
L1	mm		1.	.5		elop	1.	9
L2 adapter length	mm		7	7		deve	8	
L3	mm		ç)		.⊑	9	
L4 minimum distance	mm	35	39	33	35		38.5	50.5
L5 usable spline length	mm	14	18	19	20		29	30.6
L6 distance to bearing	mm	51	57.5	53	55.9		68.3	83
L7 min. bearing clearance	mm	3	3	3	4		3	-
L8 hole distance 2-hole	mm		10	6.4			106.4	146

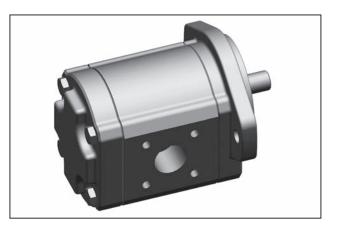
B) PTO dimensions

Torque transmission. Output shaft

B) Output shaft transfer torque

Rated size		55	75	105	135	165	210	280
Continuous transfer torque	Nm	220	305	420	540	in develop-	840	1120
Max. transfer torque	Nm	350	485	670	870	ment	1340	1800

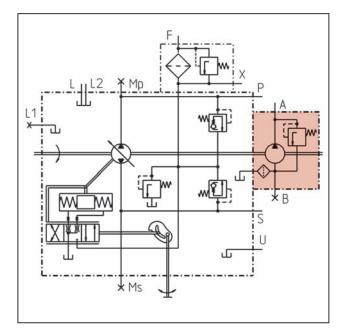

Gear pumps.

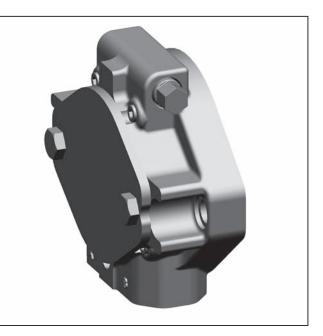

Two types of gear pumps are available: internal gear pump IGP and external gear pump EGP. The possible combinations of and with IGP and EGP are determined by the PTO option and the permitted shaft torque. Both types can be used as boost pump for the main circuit or the control and cooling circuit. The suction limit of 0.8 bar min. (absolute) must be adhered to. The boost pressure relief valves for the rated sizes 55-135 are integrated in the port plate housing, and for the rated sizes 210 and 280 in the charge pressure manifold of the HPV-02.

Technical data

Max. displacement volume	cm³/rev	16	19	22.5	31	38	44
Standard boost pump for HPV-02	Rated size	55		75-135		210	280
Type of gear pump		IGP	EGP	IGP	EGP	EGP	EGP
Mounting flange and drive shaft profile		SAE A 16/32, 18 t	SAE A 16/32, 9 t	SAE A 16/32, 18 t	SAE A 16/32, 9 t	SAE A 16/32, 13 t	SAE A 16/32, 13 t
Type of suction		internal, external	external	internal, external	external	external	external
Max. perm. operating pressure observe max. permissible rated pressures for filter and cooler	bar	40	250	40	165	275	220
Standard PTO flange and shaft spline		SAE A 16/32, 9 t	-	SAE A 16/32, 9 t	-	-	-
Continuous output torque	Nm	175 75 Nm with SAE A	-	175 75 Nm with SAE A	-	-	-
Max. output torque	Nm	250 107Nm with SAE A	-	250 107Nm with SAE A	-	-	-
Cold start relief valve		integrated	-	integrated	-	-	-

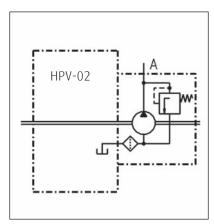
External gear pump EGP

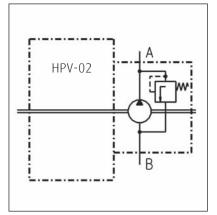


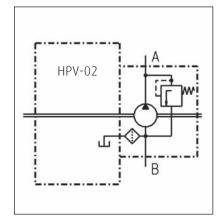

The EGP type features external suction.

Gear pumps.

The IGP boost pumps include a cold start relief valve and a through drive for attaching additional pumps. The suction can be internal, external or combined. IGP types are available in rated sizes of 16 cm³/rev and 22.5 cm³/rev.


Internal gear pump IGP with internal suction




Internal suction

External suction

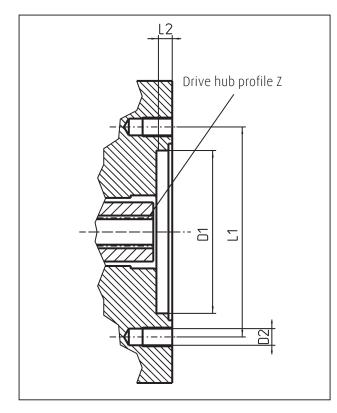
Combined suction

>> Internal suction

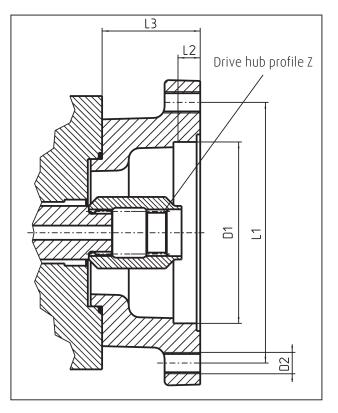
The boost pump supplies the main circuit with oil from the pump housing. External connection B is closed.

>> External suction

The boost pump supplies the main circuit with oil from the oil tank. The internal connection is closed.


>> Combined suction

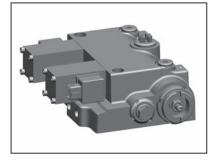
The boost pump supplies the main circuit with oil from the pump housing and oil tank. This type of suction is a combination of internal and external suction.


PTO flange with IGP

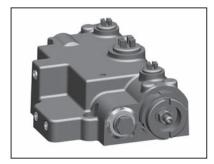
Flan	ge profile 2-hole		SAE A	SAE B	SAE B-B	SAE C
Ζ	Internal drive hub profile $_{w/ANSI B92.1}^{in according}$		16/32, 9 t	16/32, 13 t	16/32, 15 t	12/24, 14 t
D1	Spigot pilot diameter	mm	82.55	101.6		127
D2	Thread size	mm	M 10	M 12		M 16
L1	Hole distance	mm	106.4	146		181
L2	Adapter length	mm	7	11		13
L3	Flange length	mm	-	55		72
Con	Continuous transfer torque Nm		75			
Maximum transfer torque Nm			107	250		

PTO SAE A with IGP

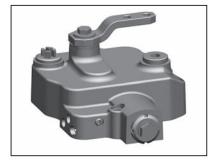
PTO SAE B, B-B and C with IGP

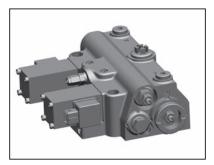

Controls.

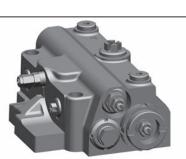
The modular control concept with standardised interface enables quick selection and adaptation for different customer and system requirements with mechanical, hydraulic or electronic control. All Series 02-controls feature an upstream signal circuit that is adapted to the respective control, and a standardised and load-independent servo control for simple and constantly available machine or vehicle control.

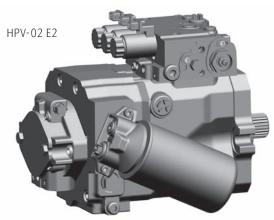

Technical data

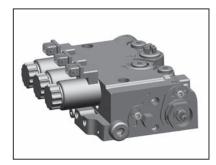
Type of control	Additional option	Name of control
Mechanical		M1
Hydraulic		H1
	with pressure cut-off regulation	H1P
	speed dependent	CA
	torque-/ power controlled	CA
	with additional safety function	CA
Electrical		E1
	with pressure cut-off regulation	E1P
	with additional safety function	E2

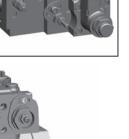

E1-control


H1-control

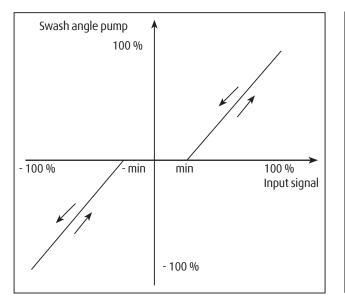

M1-control

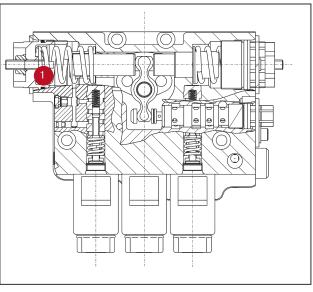

E1P-control


H1P-control



CA-control

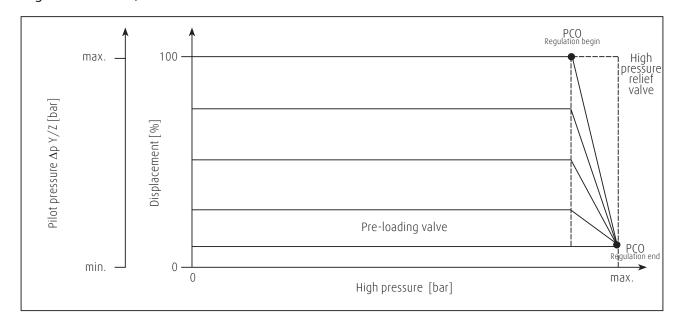



Controls. Control accuracy

All Series 02-pump controls result in the same machine response for identical motion commands, irrespective of the control type. Corrective action by the operator is no longer required. The reliable control of the pump can easily be integrated into any kind of vehicle management control system.

E2-control

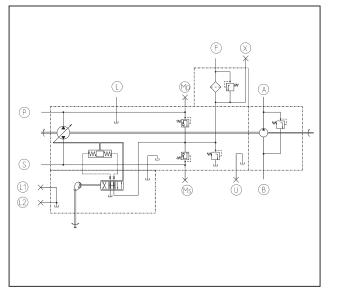
Control accuracy of a HPV-02 pump

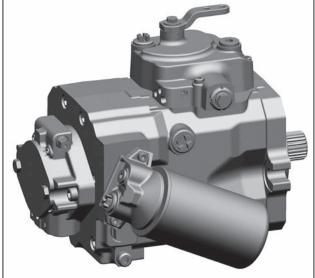


Setting the maximum displacement

Pressure cut-off regulation PCO

Special control elements deal with functions such as torque control or pressure cut-off regulation. Controls with pressure cut-off regulation (PCO) reduce pump flow when the cut-off pressure is reached. Because system pressure is maintained at low flow, the power consumption and thermal balance of the system are optimised.


Displacement relative to pilot pressure and pressure cut-off regulation for M-, H- and E-controls



Controls. Mechanical-hydraulic M

The M1-pump control combines robustness with high precision for direct and reliable machine control. It is mechanically controlled and can be combined with a fixed, variable or regulating hydraulic motor. The control-specific data is independent of the nominal pump size.

M1. Mechanical control

Flow direction

By turning the control lever the pump flow rate and direction of flow are controlled via a cam plate. The flow direction of the fluid depends on

- >> the pump direction of rotation
- >> the over centre direction of the swash plate.

High pressure outlet port

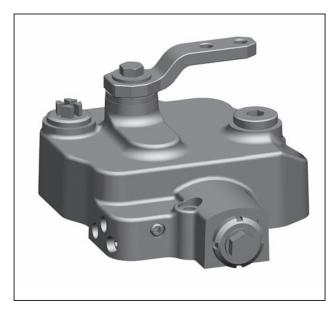
Cam lever direction	Shaft rotation (view on Z)	Right hand	Left hand
	0 -> 1	P	S
	0 → 2	S	Ρ

- P, S High pressure ports
- A Pressure port, boost pump
- B Suction port, boost pump
- F Feed port, boost and control
- X Test port, control pressure
- Ms, Mp Test ports, high pressure
- L, U Drain ports
- L1, L2 Vent ports

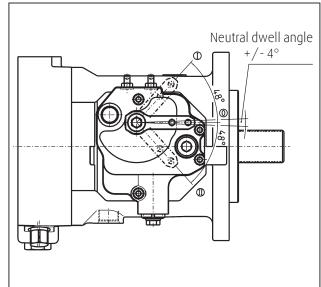
Note for left hand rotation

- A Suction port, boost pump
- B Pressure port, boost pump

Controls. Mechanical-hydraulic M

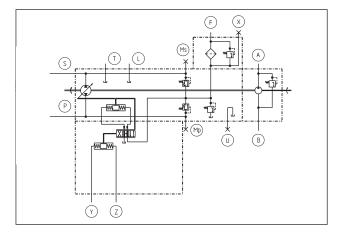

The cam plate offers a large control angle with progressive control characteristic and a wide neutral range. The resulting high resolution for movements from the neutral range (and vice versa) enables precise manoeuvring. Reliable and robust control of the displacement volume is achieved through position feedback.

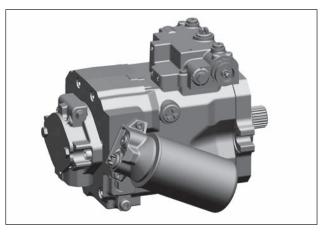
Displacement relative to control angle



Control force with max. long lever radius r= 70 mm	17 N
Max. permissible control force (intermittent)	500 N
Control torque	1.2 Nm
Centred reset by external force	1.2 Nm
Control angle neutral range to end position	±4°±48°
Minimum response time with standard restrictors	0.5 sec

M1-cam plate


Control range

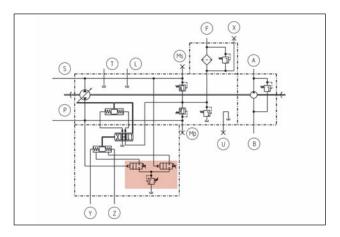


Controls. Hydraulic H

The HPV-02 H1 features hydraulic control with a wide pilot pressure range for improved machine control. It can be combined with a fixed, variable or regulating hydraulic motor. The data is specific for hydraulic controls, and independent of the nominal pump size and pressure cut-off regulation PCO, unless specified otherwise (see section Controls. Control accuracy).

H1. Hydraulic control

Flow direction


By an external hydraulic signal input at the pilot pressure ports (Y, Z) the pump flow rate and direction of flow are controlled. The flow direction of the fluid depends on

- >> the pump direction of rotation
- >> the over centre direction of the swash plate.

High pressure outlet port

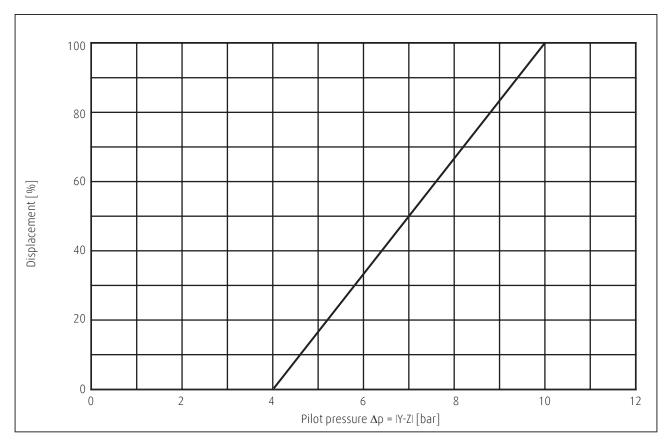
Pilot pressure port	Shaft rotation (view on Z)	Right hand	Left hand
	Y	Ρ	S
	Z	S	Ρ

H1P. Hydraulic control with PCO

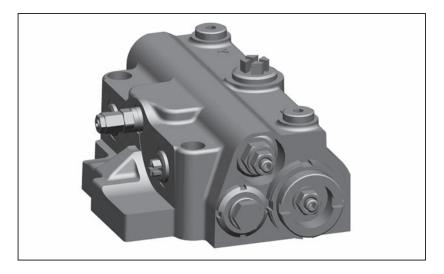
P, S High pressure ports

A Pressure port, boost pump

- B Suction port, boost pump
- F Feed port, boost and control
- X Test port, pilot pressure
- Ms, Mp Test ports, high pressure
- L, U Drain ports
- T Vent port
- Y, Z Pilot pressure ports

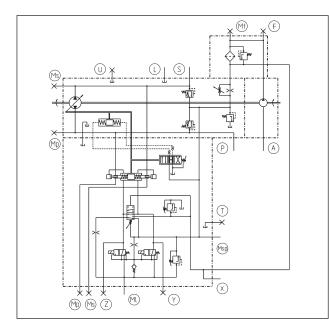

Note for left hand rotation

- A Suction port, boost pump
- B Pressure port, boost pump


Controls. Hydraulic H

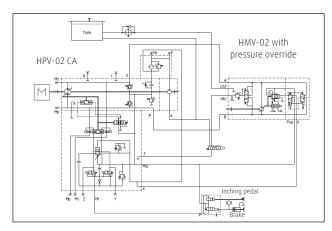
Pilot pressure range standard	4 - 10 bar differential pressure Y – Z
Maximum permissible pressure at Y or Z	30 bar
Minimum response time with standard orifices	
for one-way swashing between 0 and \pm max	0.5 sec

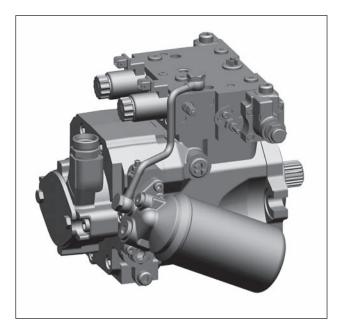
Displacement relative to pilot pressure


H1P-control with PCO

Controls. Hydraulic-mechanical CA

The HPV-02 CA is a speed-dependent pump control with torque/power regulation. It can be combined with a hydraulic motor as fixed, variable or regulating motor or a variable motor with pressure regulator. The modular design offers a high degree of versatility in terms of function and control.


CA. Hydraulic-mechanical control

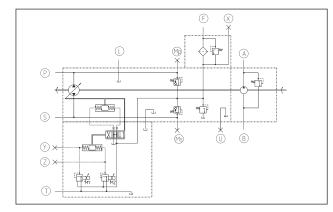


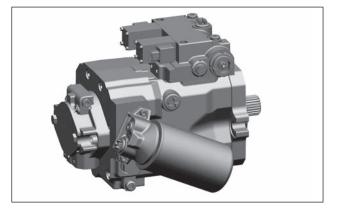
CA-control. Advantages

- >> pilot operated system
 - >> controlled load response
 - >> temperature independent
 - >> dynamics
 - >> precision
 - >> low hysteresis
 - >> high versatility (modular design)
 - >> various motor control possible
- >> simple adjusting
- >> direct control of torque and tractive force
- >> speed optimized inching function
- >> high safety standard
- >> hydrostatic deceleration

Drive with speed-dependent variable pump and variable motor with pressure override

P, S	High pressure ports
A	Suction port, boost pump
F	Feed port, boost and control
Test ports	
Mt	Temperature
Ms, Mp	High pressure
Y, Z	Pilot pressure
MI	For power settings and inch pressure port
Msp	Boost pressure
Х	Pilot pressure port HMV
L, U	Drain ports
L1, L2	Vent ports
Т	Drain and vent port
N. A. C. I.C.	


Note for left hand rotation

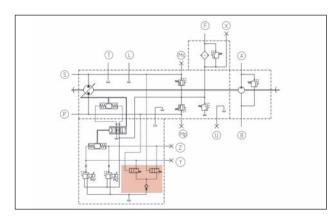

A Suction port, boost pump

Controls. Electro-hydraulic E1

The HPV-02 E1 has two proportional solenoids and through the upstream signal circuit it combines the flexibility of electronic vehicle management with the reliability of a pump control marked by its high operational availability. Precise and simple. Identical commands always call for the same response in the machine, so no corrective action is required by the operator or the electronic system.

E1. Electro-hydraulic control

Flow direction


By an external electrical signal input at the solenoids (MY and MZ) the pump flow rate and direction of flow are controlled. The flow direction of the fluid depends on

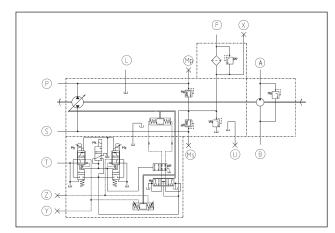
- >> the pump direction of rotation
- >> the over centre direction of the swash plate.

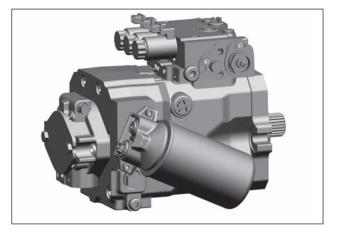
High pressure outlet port

Active solenoid	Shaft rotation (view on Z)	Right hand	Left hand
	MY	Ρ	S
	MZ	S	Ρ

E1P. Electro-hydraulic control with PCO

- P, S High pressure ports
- A Pressure port, boost pump
- B Suction port, boost pump
- F Feed port, boost and control
- X Test port, pilot pressure
- Ms, Mp Test ports, high pressure
- L, U Drain ports
- T Vent port


Note for left hand rotation


- A Suction port, boost pump
- B Pressure port, boost pump

Controls. Electro-hydraulic E2

The HPV-02 E2, with its additional release function, can easily be integrated in an electronic vehicle management control system like an E1-control. In addition it offers a safety standard that meets the stringent requirements for road traffic use. The E2-control features two proportional solenoids and a switching solenoid.

E2. Electro-hydraulic control

Flow direction

By an external electrical signal input at the solenoids (MY and MZ) the pump flow rate and direction of flow are controlled. The flow direction of the fluid depends on

- >> the pump direction of rotation
- >> the over centre direction of the swash plate.

High pressure outlet port (see section Control. Electro-hydraulic E1)

E2 with safety function

The electronic control unit compares the travel command to other machine signals. In case of a system fault (e.g. by cable break or short-circuit) the electronic control unit will deactivate the release solenoid of the E2-control and the pump is brought actively to neutral under full control. Upon this the vehicle is brought to rest in a smooth jerk-free manner – without endangering the driver.

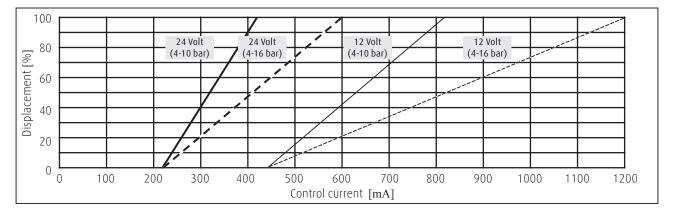
Its use is recommended for mobile applications where specific criteria have to be met in terms of travel and coasting behaviour, e.g. road traffic use.

Product advantages of E2

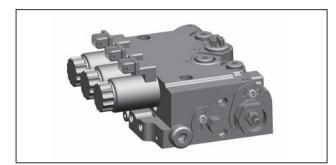
- >> fulfils the rigorous demands for road traffic use
- >> active drive enable
- >> minimized susceptibility to interference
- >> with HMF-02: defined swashing back of pump for controlled deceleration and stop in case of system fault with HMV-02: diesel overspeed protection by fast swashing back of pump
- P, SHigh pressure portsAPressure port, boost pumpBSuction port, boost pumpFFeed port, boost and controlXTest port, control pressure
- Ms, Mp Test ports, high pressure
- Y, Z Test ports, control pressure
- L, U Drain ports
- T Vent port
- F -

Note for left hand rotation

- A Suction port, boost pump
- B Pressure port, boost pump


Controls. Electro-hydraulic E

The data is specific for electrical controls, and independent of the nominal pump size and PCO pressure cut-off regulation, unless specified otherwise (see section Controls. Control accuracy). Figures HPV-02 E1 and HPV-02 E2 (page 22, 23) show the standard mounting position for the respective E-control.


Control signal characteristics

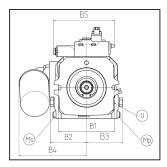
Supply voltage = li	miting voltage		V	12	24	
Connector type				Hirschmann (not for round solenoids) AMP-Junior-Timer, 2-pin		
Voltage type				Direct Curr	ent (D.C.)	
Power consumptio	n		W	15	.6	
Rated current= lim	iting current		ΜA	1300	650	
	Swash begin		mA	450 ±10	225 ±10	
Control current	Swash end	pilot pressure range 4-10 bar	mA	810	410	
	on request	pilot pressure range 4-16 bar	mA	1200	600	
Relative duty cycle	2		%	100		
Protection class				IP 6K6K, Teil 9		
	digital control via Pulse Width Modulation PWM with Linde transducers			100 Hz Rectangle, Pulse duty ratio variable over control ran		
Control types	analogue control with alternative transducers			Direct Current (with or without superimposed dither signal fo stability and reducing hysteresis, dither:±125 mA, 32-40 Hz, pulse duty ratio 1:1)		
Minimum response	e time with standard orifices		S	0.5		

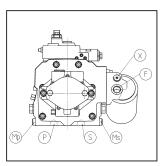

Displacement relative to control current

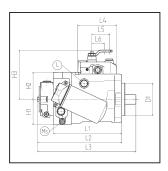
E2-electro-hydraulic control

E1P-electro-hydraulic control with PCO

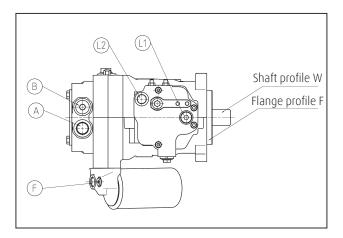
Control-specific dimensions for HPV-02 with mechanical-hydraulic controls.


Port sizes and dimensions for M-controls

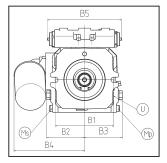

Rated size	55	75	105	135		
Gear pumps rated size [cm ³]	16		22.5			
F flange profile	2-hole mounting flange					
r nange prome		SAE C		SAE D		
W shaft profile		16/32 sp	line pitch			
in accordance with ANSI B92.1	21 te	eeth	23 teeth	27 teeth		
D1 [mm]		127		152.4		
B1 [mm]		181		228.6		
B2 [mm]	101	1	16	141		
B3 [mm]	101	1	16	141		
B4 [mm]	192	2	16	219		
B5 [mm]		1	94			
L1 [mm]	225	242	267	288		
L2 [mm]	282 304 329			350		
L3 [mm]	335	359 385		425		
L4 [mm]	151					
L5 [mm]	70					
L6 [mm]		4	8			
H1 [mm]	88	93	99	106		
H2 [mm]	95	103	105	112		
H3 [mm]	184	188	193	198		
Р	SAE 3/4 "	SAI	E1"	SAE 1 ¼"		
S	SAE 3/4 "	SAI	E 1"	SAE 1 ¼"		
A gear pump	M27x2					
B gear pump		M2	7x2			
L		M22x1.5		M27x2		
U		M22x1.5		M27x2		
F	M22x1.5					
Х	M22x1.5					
Мр	M14x1.5					
Ms	M14x1.5					
L1			x1.5			
L2	M22x1.5					

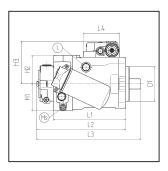

210	280		
38	44		
4-hole mou	nting flange		
SA	EE		
16,	/ 32		
27 teeth	33 teeth		
	5.1		
224	225		
142	155		
135	-		
240	246		
19			
346 516	392 571		
591	646		
	51		
	0		
	8		
134	152		
133	150		
226	238		
SAE	1 ½"		
SAE	1½″		
SAE			
SAE			
M27x2	M33x2		
M27x2	M33x2		
M27x2 M14	M27x2		
M14			
M14	x1.5		
	x1.5		
M22			
 	-		

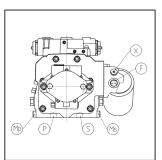
165


under development

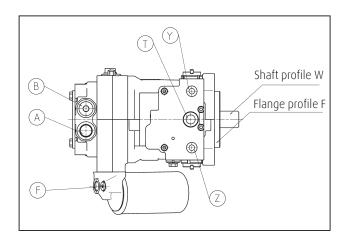
Threads metric in accordance with ISO 6149 Threads for SAE high pressure port metric in accordance with ISO 261 Socket cap screw in accordance with ISO 4762



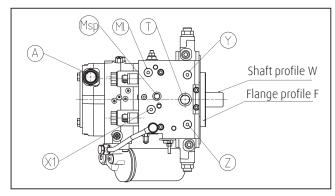

Control-specific dimensions for HPV-02 with hydraulic controls.

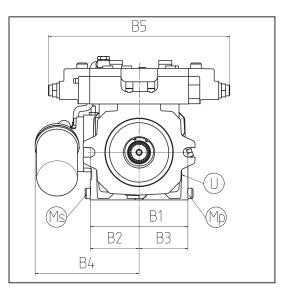

Port sizes and dimensions for H-controls

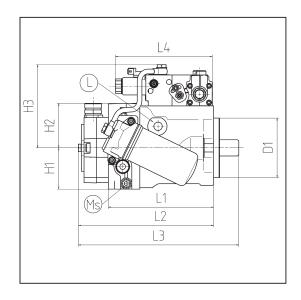
Rated size	55	75	105	135				
Gear pumps rated size [cm ³]	16 22.5							
F flange profile	2-hole mounting flange							
5 1		SAE C		SAE D				
W shaft profile		16/32 sp	line pitch					
in accordance with ANSI B92.1	21 te	eeth	23 teeth	27 teeth				
D1 [mm]		127		152.4				
B1 [mm]		181		228.6				
B2 [mm]	101	1	16	141				
B3 [mm]	101	1	16	141				
B4 [mm]	192	2	16	219				
B5 [mm]		2	31					
L1 [mm]	225	242	267	288				
L2 [mm]	282	304 329 359 385		350				
L3 [mm]	335	425						
L4 [mm]	133							
H1 [mm]	88	93	99	106				
H2 [mm]	95	103	105	112				
H3 [mm] w/o PCO	194	154	158	163				
e a with PCO	185	190	194	199				
Р	SAE ¾"	SAE 1"		SAE 1 ¼"				
S	SAE 3/4" SAE 1" SAE 1 1/4"							
A gear pump	M27x2							
B gear pump	M27x2							
L	M22x1.5							
U	M22x1.5							
F			x1.5					
Т	M22x1.5							
Х		M14						
Мр	M14x1.5							
Ms			x1.5					
Y	M14x1.5							
Z		M14	M14x1.5					

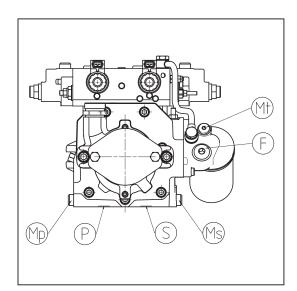

165	210	280			
	38	44			
	4-hole mour	nting flange			
	SAE E				
	16 /	/ 32			
	27 teeth 33 tee				
	16	5.1			
	224	225			
	143	155			
	135	139			
	240	246			
	231				
	346	392			
nt	516	571			
in development	591	646			
lop		33			
eve	134	152			
in d	133	150			
	191	204			
	201	214			
	SAE 1 1/2 "				
	SAE	1 1/2"			
	SAE	. 3/4"			
		11/4"			
	M27x2	M33x2			
	M27x2 M27x2	M33x2			
		M27x2			
	M22				
	M14				
	M14x1.5 M14x1.5				
	IV\14	x1.5 x1.5			
	/V\14	X1.3 v1.5			
	M14x1.5				

Threads metric in accordance with ISO 6149 Threads for SAE high pressure port metric in accordance with ISO 261 Socket cap screw in accordance with ISO 4762

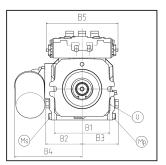

Dimensions. CA-controls

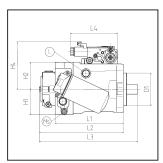

Control-specific dimensions for HPV-02 with hydraulic-mechanical controls.

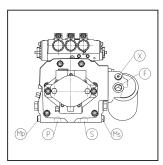

Port sizes and dimensions for CA-controls

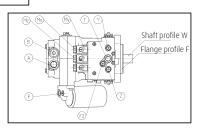

Rated size	55	75	105	135
Gear pumps rated size [cm³]	16	16		
F (1	2-hole mour	nting flange		
F flange profile	SAI	E C		
W shaft profile in accordance with	16/32 sp	line pitch		
ANSI B92.1	21 te			
D1 [mm]	12	7		
B1 [mm]	18			
B2 [mm]	101	116		
B3 [mm]	101	116		
B4 [mm]	193	212		
B5 [mm]	33	6		
L1 [mm]	225	242		
L2 [mm]	289	306		
L3 [mm]	343 361		lent	in development
L4 [mm]	207		udc	
H1 [mm]	88	93	n development	velo
H2 [mm]	95	103	de	lde
H3 [mm]	178	184		
A gear pump	M36	5x2	1	
Р	SAE		1	
S	SAE			
L	M22			
U	M22			
F	M22			
Т	M22			
X1	M14			
Мр	M14		-	
MI	M14			
Ms	M14			
Msp	M14			
Mt	M14x1.5			
Y	M14			
Z	M14			

Threads metric in accordance with ISO 6149 Threads for SAE high pressure port metric in accordance with ISO 261 Socket cap screw in accordance with ISO 4762

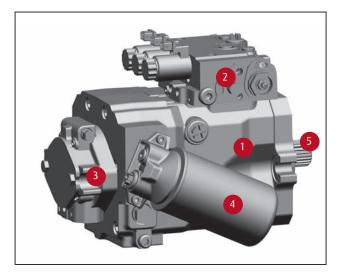

Control-specific dimensions for HPV-02 with electro-hydraulic controls.

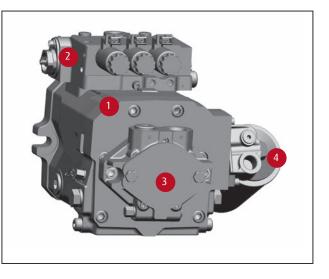

Port sizes and dimensions for E-controls


Rat	ed size	55	75	105	135	165
Gea	ar pumps ed size [cm³]	16		22.5		
г fl	ange profile	2	2-hole mou	nting flange	2	
			SAE C		SAE D	
W S	shaft profile					
	I B92.	21 te	eeth	23 teeth	27 teeth	
D1	[mm]		127	152.4		
B1	[mm]		181		228.6	
B2	[mm]	101		16	141	
B3	[mm]	101		16	141	
B4	[mm]	192		16	219	
B5	[mm] E1			26		
B5 L1	[mm] E2 [mm]	225	242	30 267	288	
L1 L2	[mm]	282	304	329	350	
L2 L3	[mm]	335	359	385	425	
L4	[mm]			33	125	
H1	[mm]	88	93	99	106	
H2	[mm]	95	103	105	112	
H4	[mm] E1 /E2	159	164	168	173	nt
	AMP-JT-connector					pme
H4 Hirs	[mm] E1 with chmann-connector	195	200 204		209	in development
P		SAE 3/4"	SA	E 1"	SAE 1 1⁄4"	de l
S		SAE 3/4"		E 1″	SAE 1 1/4"	. 드
Мр				x1.5		
Ms			M14	x1.5		
Ag	ear pump			7x2		
	ear pump			7x2		
L				x1.5		
U F			M22 M22			
T						
X						
Y						
Ζ						
F2						
Ms	E1-control E2-control					
1015	round solenoids					
	E1-control		Hirschmar	nn, AMP-JT		
My	E2-control round solenoids		AM	P-JT		
	E1-control			n, AMP-JT		
Mz	E2-control					
	round solenoids		AM	P-JT		


Threads metric in accordance with ISO 6149 Threads for SAE high pressure port metric in accordance with ISO 261 Socket cap screw in accordance with ISO 4762

210	280				
38	44				
4-hole mo	ounting flange				
0	SAE E				
16 / 32					
-	n 33 teeth				
1	65.1				
224	225				
143	155				
135	139				
240	246				
	226				
	230 392				
346 516	571				
591	646				
	183				
134	152				
133	150				
218	231				
254	(267)				
SA	E 1 ½"				
SA	E 1 ½"				
	14x1.5				
M	14x1.5				
SA	AE 3/4"				
	E 1 1/4"				
M27x2 M27x2	M33x2 M33x2				
M27x2	M27x2				
	22x1.5				
M1	4x1.5 4x1.5				
M	14x1.5				
M1	14x1.5				
	-				
	MP-JT				
Hirschm	ann, AMP-JT				
A	MP-JT				
Hirschm	ann, AMP-JT				
A	MP-JT				
1					

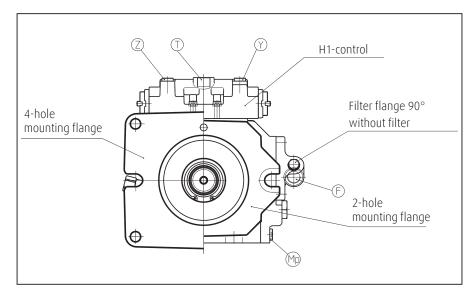




The following data enable quick calculation of the overall maximum external dimensions. In each case only the relevant dimensions are shown so that length, width and height can simply be determined through addition. The actual fitting dimensions of the respective units are shown on the installation drawing.

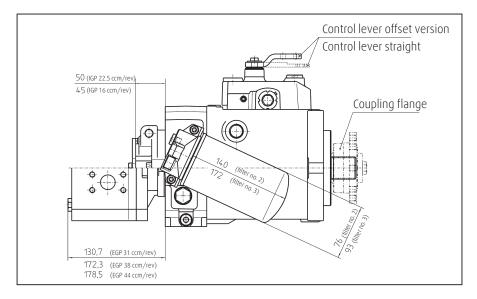
External dimensions for addition

Component	Туре	Length	Width	Height
Basic unit	55	230	210	185
	75	245	235	190
	105	270	235	210
	135	290	280	220
	165		in development	
	210	350	290	275
	280	395	315	305
Control	M1	-	10	95
	H1	-	5	55
	H1P	-	10	75
	CA	-	135	95
	E1	-	5	110
	E1P	-	10	110
	E2	-	15	110
Gear pump	16 cm ³	60	-	-
	22,5 cm ³	65	-	-
	31 cm ³	135	-	-
	38 cm ³	175	-	-
	44 cm ³	180	-	-
Filter	No. 2	10 without	95	-
	No. 3	gear pump	105	-
	F-port 90°	15	50	-
Coupling flange		75	-	-
Intermediate flange	SAE B, B-B	20	-	-
Shown under Dimensions.	SAE C size 55/75	50	-	-
Tandem pumps	SAE C size 105	40	-	-
	SAE C, C-C, D	65	-	-


Example:

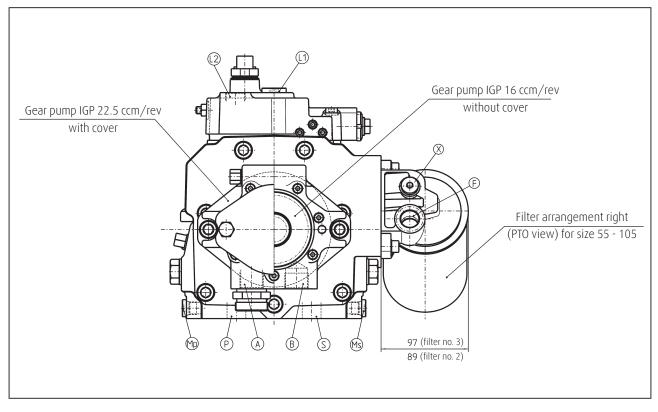
HPV 135-02 H1 with IGP 22.5, filter no. 3 and coupling flange

L. 440 mm


The following diagrams show the proportions of similar components.

View on mounting flange

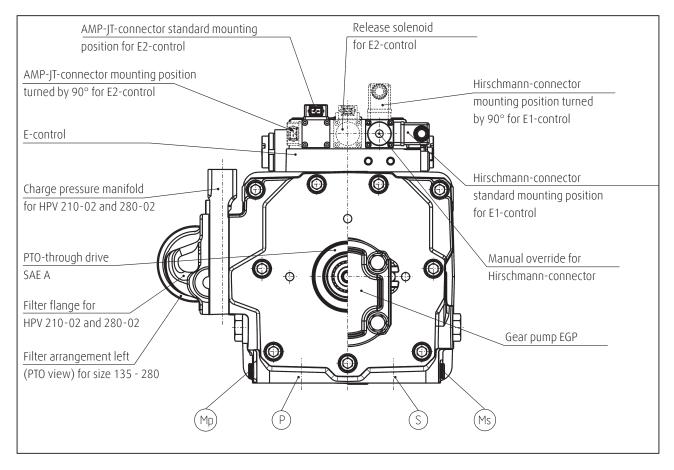
- >> 4-hole mounting flange
- >> 2-hole mounting flange
- >> H1-control
- >> filter flange 90° without filter


Side view

- >> M1-control lever geometry
- >> |GP
- >> EGP
- >> filter
- >> coupling flange

The following diagrams show the proportions of similar components.

PTO view



>> M1-control

- >> IGP 22.5 cm³/rev with cover
- >> IGP 16 cm³/rev without cover
- >> filter mounting side for rated sizes 55 105

The following diagrams show the proportions of similar components.

PTO view

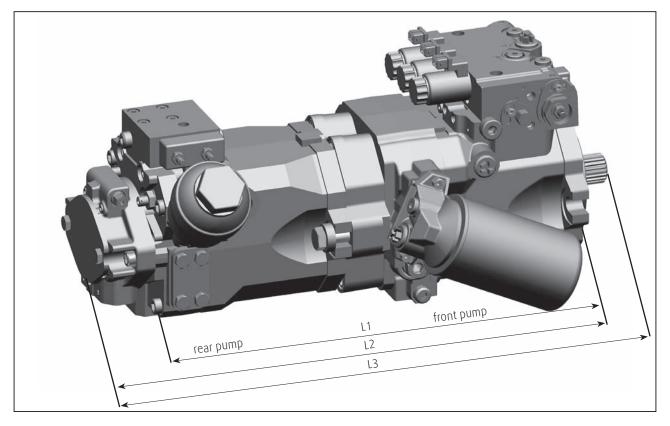


- >> E1-control with mounting position of solenoid connectors
- >> E2-control with mounting position of solenoid connectors
- >> manual override
- >> Hirschmann-connector
- >> AMP-JT-connector
- >> filter mounting side for rated size 135 280
- >> charge pressure manifold for rated size 210 and 280 without filter
- >> SAE A PTO-mounting flange
- >> EGP

Dimensions. Tandem pumps

Tandem pumps are created by connecting individual HPV units in series, with the pumps arranged by capacity. Positioning the boost pump(s) at the end of the tandem ensures optimum space utilisation, output allocation and load distribution.

HPV-02 tandem pump


Overall length of tandem pump

Rated size	Rear pump	HPV 55	HPV 75	HPV 105	HPV 135	HPV 165	HPV 210	HPV 280
Front pump	Lengths [mm]							
HPV 55	L1	496	-	-	-		-	-
with IGP 16 cm ³	L2	553	-	-	-		-	-
at rear pump	L3	607	-	-	-		-	-
HPV 75	L1	513	530	-	-		-	-
with IGP 22.5 cm ³	L2	575	592	-	-		-	-
at rear pump	L3	631	648	-	-		-	-
HPV 105	L1	529	546	572	-	ent	-	-
with IGP 22.5 cm ³	L2	591	608	634	-	in development	-	-
at rear pump	L3	647	663	689	-		-	-
HPV 135	L1	543	560	586	640		-	-
with IGP 22.5 cm ³	L2	605	622	648	702		-	-
at rear pump	L3	680	696	722	777		-	-
HPV 210	L1	610	627	653	689		731	-
with EGP 38 cm ³	L2	782	799	825	861		903	-
at rear pump	L3	857	874	900	935		978	-
HPV 280	L1	655	672	698			777	823
with EGP 44 cm ³	L2	834	851	877	in development		956	1002
at rear pump	L3	909	925	951			1030	1076

Dimensions. Multiple pumps

Multiple pumps are created by combining individual pump units in series, with the pumps arranged by capacity. Positioning the gear pump(s) at the end of the unit ensures optimum space utilization, output allocation and load distribution. The following table is based on the gear pump acting as boost pump for the HPV-02 variable pump.

HPV-HPR-02 multiple pump

Overall length of multiple pump

Rated size	Rear pump	HPR 55	HPR 75	HPR 105	HPR 135	HPR 165	HPR 210
Front pump	Lengths [mm]						
HPV 55 with IGP 16 cm ³ at HPR	L1	492	-	-	-	in development	-
	L2	549	-	-	-		-
	L3	603	-	-	-		-
HPV 75 with IGP 22.5 cm ³ at HPR	L1	509	521	-	-		-
	L2	586	598	-	-		-
	L3	642	653	-	-		-
HPV 105 with IGP 22.5 cm ³ at HPR	L1	525	536	567	-		-
	L2	602	613	629	-		-
	L3	657	669	684	-		-
HPV 135 with IGP 22.5 cm ³ at HPR	L1	539	550	581	637		-
	L2	616	627	643	699		-
	L3	690	702	717	774		-
HPV 210 with EGP 38 cm ³ at HPR	L1	606	618	648	686		733
	L2	793	805	820	858		905
	L3	868	879	895	932		980
HPV 280 with EGP 44 cm ³ at HPR	L1	651	663	693	in develop-	779	
	L2	845	856	872			958
	L3	919	931	946	ment		1032

Modular system features.

The HPV-02 is based on a modular system and offers the features listed below. This enables the product to be configured to your requirements. With the modular system being constantly extended, we ask you to contact our sales engineers for the latest system features.

- >> Size
- $>> V_{max}$
- >> Mounting flange
- >> Coupling flange
- >> Drive Shaft
- >> Direction of Rotation
- >> PTO direct mounting
- >> Tandem pump
- >> Internal gear pump
- >> External gear pump
- >> Suction internal gear pump
- >> Direction of GP suction
- >> PTO mounting on IGP
- >> Port threads
- >> Control

- >> Pilot pressure range for H-/E-control
- >> Control lever geometry
- >> Position of control lever
- >> Voltage for E-controls
- >> Cut-off for E-controls
- >> Connectors for E-controls
- >> Arrangement of solenoids
- >> High pressure relief valve
- >> Boost pressure relief valve
- >> Cold start relief valve
- >> Drain port U + L
- >> Filter / charge pressure manifold
- >> Filter flange mounting
- >> Surface treatment
- >> Name plate

Your notes.

How to reach us. Linde Hydraulics. Sales and service partners.

Internet www.linde-hydraulics.com

Phone	+49.60 21.99-42 01 +49.60 21.99-0 switchboard
Fax	+49.60 21.99-42 02 +49.60 21.99-42 30
Email	info@linde-hydraulics.com
Mail	Linde Material Handling Gmb Linde Hydraulics
	Grossostheimer Str. 198 63741 Aschaffenburg
	P.O. Box 100136 63701 Aschaffenburg

Linde Hydraulics. Sales companies.

- (E) Linde Material Handling Ibérica S. A. Avda. Prat de la Riba, 181, 08780 Palleja (Barcelona), phone +34.9 36 63 32 32, hidraulica@linde-mh.es
- (F) Fenwick Linde, Activité Linde Hydraulique
 1, rue du Maréchal de Lattre de Tassigny, 78854 Elancourt Cedex, Telefon +33.1 30 68 46 47, contact.hydraulics@fenwick-linde.fr
- (GB) Linde Hydraulics Ltd.7, Nuffield Way, Abingdon, Oxon OX14 1RJ, phone +44.12 35.52 28 28, enquiries@lindehydraulics.co.uk
- (I) Linde Material Handling Italia SPA.
 Via Luguzzone, 21020 Buguggiate (VA), phone +39.03 32.877 111, vendita.idraulica@linde-mh.it
- (USA) Linde Hydraulics Corporation P.O.Box 82, 5089 Western Reserve Road, Canfield Ohio 44 406, phone +1.330.5 33 68 01, info@lindeamerica.com
- (BR) Linde Hydraulics do Brasil Rua Anhanguera, 1.121, Jd. Piratininga - CEP 06230-110, Osasco SP, phone +55.11.36 04 47 56, hydraulics@linde-mh.com.br
- (VRC) Linde (China) Forklift Truck Corporation Ltd., Division Hydraulics No. 89 Jinshang Road, 361009 Xiamen, phone +86.592.55 33 291, hydraulics@linde-china.com

